ADAPTIVE LEARNING PLUS REAL TIME ANALYTICS = SUCCESSFUL TRANSFORMATION: GPC'S WORK WITH MCGRAW HILL'S ALEKS

Andrea Hendricks Dept. Chair, Math/CS Georgia Perimeter College December 12, 2014

22 years teaching mathematics

13 years teaching online 6 years purely online

MY EXPERIENCES

- Used web-based technology in my classes since 2001 Required online homework/testing
- Course was the same for all students
- Used systems with Mastery approach (get x% to move on to next assignment)
- System was flawed
 - (advanced/weak students)

WHAT PROMPTED OUR CHANGE

Redesign

Rethink

WHAT WOULD YOUR COURSE LOOK LIKE?

- 1. To diagnose deficiencies of students and provide just in time remediation
- 2. To have individualized learning paths for students
- 3. To provide accountability for retaining material
- 4. To ensure students have the necessary prerequisites to move on
- 5. To have consistency across delivery method (online and f2f)
- 6. To provide easy transition for repeating students

WHY WE CHOSE ALEKS

- 1. Reporting tools in ALEKS
- 2. Individualized learning path and accountability for prerequisite topics
- 3. Initial assessment/ automatic reassessments (30 questions or less)
- 4. Presents topics when students are ready to learn
- 5. Very easy to set up and use from instructor side

CONTINUED

- Easy for students to continue where they left off if they have to repeat – don't have to repeat topics they had already completed
- 7. More difficult for students to game the system
- 8. Instructors free to focus on teaching and developing students
- 9. McGraw-Hill/ALEKS support
- 10. Down time in ALEKS virtually non-existent

1991

University of California Irvine

Knowledge Space Theory

HE MATH/STATISTICS

HE BUSINESS

HE SCIENCE

HE BEHAVIORAL SCIENCE

Assessment and Learning in Knowledge Spaces

OVERVIEW OF ALEKS

Content represented by a Pie

Assessments – Initial, Automatic, and Scheduled

Can align with textbook and use printed resources

Can assign due dates to chunks of material or assign mastery level

Students presented topics when they are ready to learn

REAL TIME ANALYTICS

Ready to Learn	
Understanding the product rule of exponents	74% >
Restriction on a variable in a denominator: Linear	65% >
Simplifying a ratio of factored polynomials: Linear factors	65% >
Evaluating expressions with exponents of zero	65% >

ALEKS PIE REPORT BY OBJECTIVE AFTER 2 WEEKS OF SEMESTER

Last login	ule 1 (01-26-	lule 2 (02-02-2	dule 3 (02-09-20	ule 4 (02-16-2	le 5 (02-23	ule 6 (03-02-	ule 7 (03-16-	ule 8 (03-30-2	dule 9 (04-13-20	ule 10 (04-27-2
01/23/2014	22/22	25/29	11/25	5/29	3/29	7/28	3/26	0/24	2/29	0/19
01/23/2014	9/22	10/29	8/25	1/29	1/29	0/28	0/26	0/24	1/29	0/19
01/24/2014	21/22	15/29	8/25	3/29	2/29	1/28	0/26	1/24	1/29	0/19
01/13/2014	22/22	29/29	25/25	23/29	15/29	21/28	20/26	14/24	17/29	8/19
01/24/2014	22/22	20/29	12/25	2/29	2/29	1/28	1/26	0/24	1/29	0/19
01/24/2014	22/22	29/29	25/25	11/29	11/29	8/28	3/26	0/24	1/29	1/19
01/24/2014	22/22	29/29	25/25	16/29	7/29	10/28	3/26	5/24	11/29	0/19
01/23/2014	22/22	25/29	17/25	10/29	5/29	7/28	7/26	0/24	3/29	2/19
01/23/2014	22/22	29/29	25/25	7/29	3/29	1/28	1/26	0/24	1/29	0/19
01/22/2014	22/22	29/29	25/25	8/29	5/29	3/28	1/26	0/24	2/29	0/19
01/24/2014	22/22	29/29	25/25	18/29	5/29	2/28	2/26	0/24	3/29	1/19
01/23/2014	22/22	29/29	25/25	29/29	19/29	1/28	2/26	0/24	1/29	2/19
01/23/2014	7/22	15/29	8/25	2/29	4/29	1/28	0/26	0/24	1/29	1/19
01/24/2014	22/22	29/29	25/25	27/29	16/29	2/28	1/26	1/24	1/29	2/19
01/24/2014	22/22	29/29	9/25	4/29	4/29	0/28	0/26	0/24	1/29	0/19
01/24/2014	22/22	29/29	25/25	22/29	16/29	23/28	26/26	17/24	22/29	5/19
01/21/2014	20/22	22/29	11/25	4/29	1/29	2/28	1/26	0/24	1/29	0/19
01/24/2014	22/22	29/29	25/25	29/29	25/29	22/28	22/26	15/24	17/29	10/19
01/23/2014	22/22	29/29	25/25	28/29	27/29	27/28	24/26	23/24	25/29	13/19
01/24/2014	19/22	14/29	7/25	2/29	1/29	0/28	0/26	0/24	1/29	0/19
01/24/2014	13/22	1/29	4/25	2/29	0/29	0/28	0/26	0/24	1/29	0/19
01/23/2014	22/22	29/29	25/25	21/29	9/29	9/28	2/26	4/24	4/29	1/19
01/22/2014	17/22	17/29	7/25	1/29	3/29	0/28	0/26	0/24	1/29	0/19
01/22/2014	22/22	28/29	23/25	12/29	12/29	16/28	2/26	2/24	2/29	1/19
01/19/2014	21/22	29/29	25/25	27/29	20/29	22/28	22/26	18/24	19/29	7/19

ALEKS PIE REPORT BY TOPIC

Module 4 (Current Objective)

50% Mastered

	Mastered	Not Mastered	Ready to Learn
Introduction to algebraic symbol manipulation	82%	18%	<u>14%</u>
Algebraic symbol manipulation: Problem type 1	41%	59%	32%
13 students out of 22 (59%) have not mastered this topic. Alexander, Rommecia C. Booker, Jasmire Burton, Jassica L. Cooper, Breyanla L. Crismon, Cassie L. Hughes, Sweetie James, Mike A. Jenkins, Cori Kolenky, Edwina T. Rumph, Samaria J. Sanchez, Latifa Taylor, Kevin D.	E <u>Se</u>	nd message to th	nese students

Finding a side length given the perimeter and side lengths with	32%	68%	32%
variables	<u>32 %</u>	00 /0	5270
Finding the side length of a rectangle given its perimeter or area	86%	14%	9%
Finding the perimeter or area of a rectangle given one of these values	23%	<u>77%</u>	<u>50%</u>
Solving equations involving vertical angles and linear pairs	27%	73%	27%
Finding an angle measure of a triangle given two angles	82%	18%	18%
Finding a percentage of a whole number without a calculator: Basic	<u>95%</u>	<u>5%</u>	<u>5%</u>
Finding the sale price without a calculator given the original price and percent discount	<u>73%</u>	27%	23%
Finding the original price given the sale price and percent discount	36%	<u>64%</u>	27%
Computations from a circle graph	55%	45%	36%
Solving a percent mixture problem using a linear equation	<u>9%</u>	91%	18%
Finding the value for a new score that will yield a given mean	73%	27%	18%
Translating a sentence by using an inequality symbol	91%	9%	9%

TIME AND TOPIC

AII	Student Id V (Login Name)	<u>Total time in</u> this course (hrs) ?	<u>Last login</u>	Total Time (for date range) ?	<u>Mon</u> 10/07	<u>Tue</u> <u>10/08</u>	<u>Wed</u> 10/09	<u>Thu</u> <u>10/10</u>	<u>Fri</u> <u>10/11</u>	<u>Sat</u> 10/12	<u>Sun</u> 10/13	Week Total <u>10/07-</u> <u>10/13</u>	Month Total <u>10/07-</u> <u>10/13</u>
1	900850428	81h 14m	12/02/2013	5h 54m (14/27)		1h 33m (3/6)	2h 00m (6/9)	37m (0/1)	33m (1/2)	1h 11m (4/9)		5h 54m (14/27)	5h 54m (14/27)
2	900847672	100h 34m	10/24/2013	8h 40m (4/5)	2h 01m (2/3)	3h 23m (2/2)	0m (0/0)	3h 14m (0/0)	3m (0/0)	-	-	8h 40m (4/5)	8h 40m (4/5)
3	900844994	103h 16m	12/02/2013	10h 21m (12/14)	5h 17m (12/14)	-	-	-	-	-	5h 04m (0/0)	10h 21m (12/14)	10h 21m (12/14)
4	900836426	97h 34m	12/04/2013	2h 06m (3/8)	-	-	-	-	15m (1/3)	21m (1/3)	1h 30m (1/2)	2h 06m (3/8)	2h 06m (3/8)
5	900835103	26h 28m	11/10/2013	1h 38m (0/1)	-	-	-	-	8m (0/0)	-	1h 30m (0/1)	1h 38m (0/1)	1h 38m (0/1)
6	900830152	17h 08m	09/21/2013		-	-	-	-	-	-	-	-	
7	900824429	126h 02m	01/10/2014	6h 27m (13/16)	10m (0/0)	1h 46m (0/0)	-	1h 13m (2/3)	-	-	3h 18m (11/13)	6h 27m (13/16)	6h 27m (13/16)
8	900804730	53h 54m	12/05/2013	3h 47m (0/0)	-	-	-	3h 45m (0/0)	-	1m (0/0)	1m (0/0)	3h 47m (0/0)	3h 47m (0/0)
9	900786549	6m	10/07/2013	6m (0/0)	6m (0/0)	-		-	-			6m (0/0)	6m (0/0)
10	-	144h 38m	12/02/2013	10h 29m (9/9)	1h 38m (1/1)	2h 51m (0/0)	2h 51m (0/0)	-	1h 43m (6/6)		1h 27m (2/2)	10h 29m (9/9)	10h 29m (9/9)
11	-	156h 47m	02/02/2014	10h 31m (7/11)			5h 16m (2/3)	3h 31m (0/1)		1h 05m (3/4)	39m (2/3)	10h 31m (7/11)	10h 31m (7/11)
12	-	121h 46m	11/25/2013	1h 19m (1/3)	-	7m (0/1)	-	25m (0/1)	48m (1/1)	-	-	1h 19m (1/3)	1h 19m (1/3)

LEARNING SEQUENCE LOG

Learning: Solving a linear inequality: Problem type 2

-		
5:14:37 P	M	Explain
5:16:52 P	M	Wrong
5:17:09 P	M	Explain
5:22:26 P	M	Correct
5:25:33 P	M	Correct
5:26:47 P	M	Wrong
5:27:40 P	M	Wrong
5:28:09 P	M	Wrong
5:28:10 P	M	Explain
5:29:54 P	M	Wrong
5:30:13 P	M	Wrong
5:30:20 P	M	Explain
5:32:06 P	M	Wrong
5:32:16 P	M	Wrong
5:32:45 P	M	Failed
5:33:15 P	M	Explain
5:35:57 P	M	Correct
5:37:48 P	M	Correct
5:40:21 P	M	Wrong
5:42:50 P	M	Wrong
5:43:11 P	M	Wrong
5:43:27 P	M	Wrong
5:43:27 P	M	Explain
5:45:42 P	M	Correct
5:47:09 P	M	Correct
5:49:29 P	M	Added to Pie

Solving a system of linear equations using elimination with addition54%Graphically solving a system of linear equations46%Finding the perimeter or area of a rectangle given one of these values46%Writing the equations of vertical and horizontal lines through a38%	Ready to Le	arn		
Graphically solving a system of linear equations46% >Finding the perimeter or area of a rectangle given one of these values46% >Writing the equations of vertical and horizontal lines through a38% >	Solving a sy equations us addition	stem of linear sing elimination wi	th 54%	>
Finding the perimeter or area of a rectangle given one of these values46% >Writing the equations of vertical and horizontal lines through a38% >	Graphically linear equat	solving a system o ions	f 46%	>
Writing the equations of vertical and horizontal lines through a 38% >	Finding the rectangle give values	perimeter or area ven one of these	of a 46%	>
given point	Writing the and horizon given point	equations of vertic tal lines through a	al 38%	>

8% >
8% >
8% >
8% >

STUDENT EXPERIENCE IN ALEKS

Course Mastery

The table gives the temperature (in $^\circ$ F) in five cities at 6 a.m. on the same day. Use the table to answer the questions.

City	Temperature (°F)
Miami	83
Portland	47
Houston	69
Buffalo	-12
Montreal	-26

(a) How much lower was the 6 a.m. temperature in Montreal than in Buffalo?			
SF lower			
(b) By noon, the temperature in Buffalo had risen by 17 °F. What was the temperature there at noon?			
] °F	Clear	Undo	Help
Next >> Explain			

(a) The temperature in Montreal was -26 °F. (It was 26 °F below zero.) The temperature in Buffalo was -12 °F. (It was 12 °F below zero.)

We want to find **how much lower** the temperature was in Montreal than in Buffalo. We are finding a difference, so we **subtract**.

-12 - (-26) = -12 + 26 By double negation = 14

The temperature in Montreal was 14 °F lower than in Buffalo.

(b) The 6 a.m. temperature in Buffalo was -12 °F. (It was 12 °F below zero.) By noon, the temperature had risen by 17 °F. So to find the noon temperature, we add.

$$-12 + 17 = 5$$

The temperature in Buffalo at noon was 5 °F .

More

Here is the answer.

APPREHENSIONS/MISCONCEPTIONS

Students are all in a different place

Can only use ALEKS in self-paced class

Can only use ALEKS in computer lab

THE IMPACT OF ALEKS AT GPC

Students/instructors know exactly what types of problems are causing confusion.

Instructors can concentrate on teaching students skills to be successful – organization, time management, retention skills.

Instructors can design meaningful activities: focus on difficult topics, provide conceptual understanding, present mini-lessons, develop group activities, and so on. Lower withdrawal rates

No more "gaming" the system

Students take ownership and responsibility of learning

Repeating students pick up where they left off in previous semester

Students working on what they are ready to learn

Pass rates have more than tripled

STUDENT PERFORMANCE PRIOR TO REDESIGN

From Fall 2008 to Spring 2011, pass rates steadily declined (close to 40% in each course)

Students took an average of 2.97 semesters to exit developmental math sequence.

Only about 16% of the lowest level students exited our developmental math program.

TOTAL ENROLLMENT IN DEV MATH COURSE

Fall 2012	3387	Spring 2014	2366
Spring 2013	2893	Summer 2014	808
Summer 2013	906	Fall 2014	2166
Fall 2013	2247		

AFFORDABILITY OF ALEKS

Subscription based (11 weeks, 18 weeks, 52 weeks)

Multiple courses completed with one access code

OUR TRANSFORMATION

Odevisive Fits All