Using WeBWorK A Short Introduction

Shaun Ault

What is WeBWorK? WeBWorK is a free and open-source online homework delivery system maintained by the Mathematical Association of America (MAA). <u>http://webwork.maa.org/</u>

Instructors using WeBWorK may find problems on the Open Problem Library (OPL), or have access to custom problems available for the course, or even write/modify their own problems. Generally each problem has some random parameter(s) built into it so that different students will see slightly different problems.

- **OPL.** The Open Problem Library is categorized by subject, chapter, and section (for example, *Calculus single variable; Differentiation; Definition of the Derivative).*
- **Local Problems.** These are problems that have already been created by a problem author for use in your courses. For example, with the support of an Affordable Learning Georgia grant (ALG), over 300 problems were created for use in the no-cost version of Analytic Geometry & Calculus I at Valdosta State University. Instructors of this course create homework sets from this problem bank in their own sections.
- **Creating your own problems.** Not recommended for the typical instructor. Custom problems can be created by coding them in PGML (problem generation markup language) / PERL. Mathematical expressions are written in a basic form of LaTeX embedding with the PGML.

Getting Started:

- 1. Go to <u>https://webwork01.valdosta.edu/webwork2/myTestCourse/</u> and login with the credentials: testuser / webwork01
- 2. Click Library Browser (on left side, under Instructor Tools).
- 3. Type a name for a new set, *without spaces* (note, you may use the underscore _ to indicate spaces), and then click **Create a New Set in This Course**. Notice that your set name is now in the box after "Add problems to **Target Set:**".
- 4. Explore the Open Problem Library. After choosing the Subject, Chapter, and Section, click **View Problems**. If you want to add any to your test set, then click **Add** for each problem, or **Add All**.
- 5. The tiny pencil icon on the upper right of each problem takes you to the **edit** page, where you can view and modify the PGML code for the problem.
- 6. Click the tiny eye icon to try out the problem as a student would see it.

Local Problems:

- 1. In the **Library Browser**, instead of using OPL problems, you may have local problems specific to your course/institution. Click on **Local Problems** to see a problem bank created specifically for VSU no-cost Calculus.
- 2. Click the drop-down menu labeled, *Local Problems: Select a Problem Collection*. Select a section and click **View Problems**.
- 3. All local problems are stored in the **File Manager**. Additional problems written locally must be uploaded to a folder in the File Manager before they can be accessed in WeBWorK. Often, a designated WeBWorK Administrator in your department will handle this part.

Modifying and Writing Problems (not for the faint of heart):

- 1. It helps to copy an existing problem that is close to the one you want to write.
- 2. Note, problems written or edited within one course are not visible to other courses. Best practice is to maintain the problems as separate files outside of the WeBWorK environment.
- 3. Typical problem development proceeds as follows:
 - Copy an existing problem to a new file, ExerciseXXX.pg (identifying the problem appropriately in the filename remember, *no spaces in any names*).
 - Edit the file using any text editor.
 - From your test course on WeBWorK, go to **File Manager**, find or create the folder into which you want to put this problem.
 - Click **Browse** to find the file, and then click **Upload**. You may wish to check the box, *Overwrite existing files silently*, especially as you intend to work on the same problem and upload it many times.
 - Go back to the Library Browser (I generally have this pulled up in a separate tab or window), find the Local Problems folder containing your problem, and click View Problems. Later, if you make changes and re-upload your problem file, then you can click View Problems again to refresh the list with the current version of the problem(s).
 - Click the tiny icon of two crossing arrows (upper right of each problem) in order to randomize the problem. It's best to click this a number of times. Sometimes a particular choice of the random parameters causes an error that you would need to address before students see the problem (*Rule of Thumb:* If some choice of random parameters causes an error, then at least one student *will* find that error and complain about it!)
 - Click on the tiny eye icon (upper right of each problem) to try it out. This is the main testing ground to verify that you've formatted the problem correctly and that it works as expected (i.e., correct answers are indeed accepted as correct). Robust testing of the problem includes entering many incorrect answers as well.
 - Once you are satisfied with the problems, you may save them all to a single file by clicking **Make Archive** in the **File Manager**. Then archives can be downloaded, shared to others, and uploaded into another WeBWorK course.

Typical Problem Structure:

Problems written in PGML consist of a few distinct parts, as shown below.

#Problem APEX 2.3.12	Commented line with information about the problem (optional)
DOCUMENT();	Start of the problem file.
<pre># Load whatever macros you need for the problem loadMacros("PG.pl", "PGbasicmacros.pl", "PGchoicemacros.pl", "PGanswermacros.pl", "PGauxiliaryFunctions.pl", "MathObjects.pl");</pre>	Macros are necessary for certain features. More information about what each macro does can be found on the MAA WeBWorK website.

```
## DBsubject(Calculus - single variable)
                                                  These lines provide database information. Most are optional.
## DBchapter(Differentiation)
                                                   The only required fields are DBsubject, DBchapter, and
## DBsection(Derivatives involving
                                                   DBsection.
multiple rules (no product, quotient, or
chain rule))
## Institution('Valdosta State
University')
## Author('S. V. Ault')
## TitleText1('APEX Calculus')
## AuthorText1('Hartman')
## EditionText1('3.0')
## Section1('2.3')
## Problem1('12')
$showPartialCorrectAnswers = 1;
                                                   The start of the problem code. In this section, variables are
                                                   set that affect the problem behavior and display. All random
a3 = random(2, 20, 1) * random(-1, 1, 2);
                                                   parameters should be defined here.
a2 = random(2, 20, 1) * random(-1, 1, 2);
a1 = random(2, 20, 1) * random(-1, 1, 2);
a0 = random(1, 20, 1) * random(-1, 1, 2);
b2 = 3*a3:
b1 = 2*a2;
b0 = a1:
sans = "$b2 x^2 + $b1 x + $b0";
TEXT(beginproblem());
                                                   The start of the displayed problem text.
BEGIN TEXT
                                                   Everything between BEGIN_TEXT and END_TEXT will be
Compute the derivative of the given
                                                   interpreted as part of the problem statement. A number of
function.
                                                   markup commands are available (such as $PAR for
$PAR
                                                   paragraph). Mathematical expressions can be written in
\[
                                                   LaTeX, using (\) for inline, and [\] for centered
  g(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0
                                                   expressions.
\]
$PAR
(g'(x) = ) \in  rule(15) 
                                                   Answer fields are coded using ans_rule as shown (there are
                                                   also other kinds of answer formats, including radio buttons,
END TEXT
                                                   dropdown lists, etc.).
ANS( fun cmp( $ans ));
                                                   The ANS command generally handles answers checking.
SOLUTION(EV3(<<'END SOLUTION')):
                                                   (Optional) Solutions can be provided to students using the
$BR$BBOLD Solution:$EBOLD
                                                   SOLUTION / END SOLUTION environment. Typically a
$PAR
                                                   student cannot see the solutions until after the due date for the
Using the Sum/Difference Rule and Power
                                                   problem set has passed.
Rule.
\ [
  g'(x) = $a3(3x^2) + $a2(2x) + $a1 x + 0
  = $ans.
\backslash 1
END SOLUTION
                                                   Ends the problem file.
ENDDOCUMENT();
```