Improving the efficacy of Open Educational Resources (OER) and student learning outcomes

RICE®

learning challenges

effective learning

one-size-fits-all

poor access to high-quality materials (\$)

OpenStax/Rice research mission

Goals:

- Provide students with activities that have been repeatedly proven to produce better retention
- Test and validate the optimal ways to integrate cog sci principles into student learning experiences
- Test and validate the efficacy of machine learningenabled personalization + learning analytics

30+ learning research studies since 2012, with partners at 12 higher ed institutions

Cognitive science research

Principles from cognitive science can help improve longterm retention and transfer of knowledge

Spaced concept practice

Timely, informative feedback

Two-step answer process engages students in retrieval practice

Principles from Cognitive Science

Principle	Description
Retrieval Practice	Retrieving information from memory strengthens memory for that information Can also improve understanding

Two-step answer process

Change multiple-choice recognition to recall

Two-step answer process engages students in retrieval practice

Principles from Cognitive Science

Principle	Description
Retrieval Practice	Retrieving information from memory strengthens memory for that information Can also improve understanding
Spacing	Spacing practice over time produces better long-term retention than massing practice

Spaced retrieval practice

Principles from Cognitive Science

Principle	Description
Retrieval Practice	Retrieving information from memory strengthens memory for that information Can also improve understanding
Spacing	Spacing practice over time produces better long-term retention than massing practice
Feedback	Feedback enables learners to correct errors and reinforce correct knowledge

Machine learning research

Machine learning algorithms can automate personalization

Understanding Learner Responses

- Which concepts interact with which questions?
- How important is each concept for each question?
- How easy/difficult is each question?
- How well has each learner mastered each concept?

Potential: use ML to choose assessment, content

Adaptively recommend questions to students based on predictions about their performance

Learn about student

 Select problems that will help determine what this student understands

Keep student engaged

Choose problems with likelihood of success (proximal zone of learning)

Help student practice problems they missed

• Choose similar problems

A recent research study

Research Question:

Can three simple, but powerful principles from cognitive science improve learning in the classroom?

ELEC 301 Signals and Systems

Method

A few simple changes to standard practice:

• Addition of spaced, retrieval practice

ELEC 301 Signals and Systems

Method

A few simple changes to standard practice:

- Addition of spaced, retrieval practice
- Students given immediate feedback and required to view it to get credit

ELEC 301 Signals and Systems

Method

A few simple changes to standard practice:

- Addition of spaced, retrieval practice
- Students given immediate feedback and required to view it to get credit
- <u>No</u> machine learning-enabled personalization

ELEC 301 Signals and Systems

Method

A few simple changes to standard practice:

- Addition of spaced, retrieval practice
- Students given immediate feedback and required to view it to get credit
- <u>No</u> machine learning-enabled personalization

Student view: working a problem, step 1

- no multiple-choice options available until student generates and submits a free-form answer

ВЕТА	ABOUT	DASHBOARD	COURSE CATALOG	CURRENT CLAS	SSES	MY TUTOR	HELP (
			Welcome	Richard My Acc	count	Sign out	6 G	
Assignment: HW 1, Exercise 2 OpenStax Tutor 101]								
The Question					Show Exerc	Assignme r	nt	
Consider the following function:					 NOT YET ANSWERED NOT YET ANSWERED 			
$x(t) = \begin{cases} 1 & -1 \le t \le 1\\ 0 & \text{else} \end{cases}$								
Using the Laplace Transform integral formula $x(t)$.	ula, find $X(s)$), the Laplace	Transform of					
Your Answer Enter a free-form answer: Preview	LaTeX Edi	tor Cancel	Save Draft					
Your Answer Enter a free-form answer: Preview \$X(s)=\frac{e^s-e^{-s}}{s}~~,~\textrm	LaTeX Edi n{all }s\$	tor Cancel	Save Draft					
Your Answer Enter a free-form answer: Preview \$X(s)=\frac{e^s-e^{-s}}{s}~~,~\textrm Write Text Draw PC Upload	LaTeX Edi h{all }s\$ Camera Phor	tor Cancel	Save Draft					

Student view: working a problem, step 2

- multiple-choice options revealed to facilitate objective grading

Student view: feedback

- intervention: students received feedback immediately after the deadline and were required to view it to receive full credit

Did the intervention improve learning?

Butler et al., Educational Psychology Review, 2014

Did the intervention improve learning?

Experiment:

Intervention (OST) vs. Standard Educational Practice (SEP)

Students performed significantly better on exam problems when learned via the Intervention method.

Butler et al., Educational Psychology Review, 2014

Hype and nifty tech – but does it improve learning?

- Hype and nifty tech but does it improve learning?
- How to best employ learning analytics to help teachers and motivate students?

- Hype and nifty tech but does it improve learning?
- How to best employ learning analytics to help teachers and motivate students?
- Scalability
- Development is costly

- Hype and nifty tech but does it improve learning?
- How to best employ learning analytics to help teachers and motivate students?
- Scalability
- Development is costly
- Last but not least... student privacy

Why is OER good for personalized learning?

- Adaptive requires data on a large scale
- Closed systems may not be enough
 - Examples: OpenStax CNX, Wikipedia draw millions of users and materials that are continually growing and updated

Why is OER good for personalized learning?

- Adaptive requires data on a large scale
- Closed systems may not be enough
 - Examples: OpenStax CNX, Wikipedia draw millions of users and materials that are continually growing and updated
- Open content, if its quality and cost attracts users, can reduce the cost of developing educational technology

Thanks!

